SANATANA DHARMA COLLEGE, ALAPPUZHAA

Fifth Semester B.Sc. Degree Internal Examination December 2022

CH 1541: Physical Chemistry I

Time: 1.30 Hours Maximum Marks:

40

Section A (1 mark each)

Answer all questions

- 1. Define mean free path
- 2. Define Boyle temperature.
- 3. Write the value of 'R' in joule
- 4. Calculate the standard emf of a galvanic cell with electrodes having standard reduction potential as $zn^{2+}/Zn = 0.76$ V and $Cu^{2+}/Cu = -0.34$ V
- 5. What is cell constant?
- 6. Write down Bragg equation. Explain the terms
- 7. Drops of water are spherical in nature. Why?
- 8. Draw an (100) plane

(1×8=8 Marks)

Section B (2 marks each)

Answer any five questions from the following

- 9. Derive Nernst equation for the galvanic cell Cd/Cd²⁺_{0.1 M}//Ag⁺_{0.1 M}/Ag
- 10. What is the need of salt bridge in galvanic cells?
- 11. Write the equation of Maxwell Boltzmann distribution of molecular velocities
- 12. Define: a) Average velocity b) RMS velocity.
- 13. Write a note on compressibility factor Z
- 14. Write a note on Bravais lattices
- 15. What are 'F' centres?
- 16. What are liquid crystals?

 $(2 \times 5 = 10 \text{ Marks})$

Section C (4 marks each)

Answer any three questions from the following

- 17. Write the postulates of Kinetic theory of gases
- 18. State and explain the applications of Kohlrausch's law

- 19. How viscosity is measured using Ostwald viscometer?
- 20. Differentiate between smectic and nematic liquid crystals
- 21. Briefly discuss about i) Schottky defects ii) Frenkel defect
- 22. Write Vander Waals equation of state and explain the significance of Vander Waals constant a and b.

 $(4\times3 = 12$

Marks)

Section D (10 marks each)

Answer any one question

- 23. a) Write a note on fuel cells
 - b) Explain various types of reversible electrodes
- 24. Derive Bragg's equation
- 25. a) Explain critical phenomena and critical constants.
 - b) How you experimentally determine the critical constants $(1 \times 10 = 10 \text{ Marks})$

S.D. College, Alappuzha

Outcome Based Internal Evaluation Blue Print – 2022-23

Programme Name and Code: B.Sc Chemistry (235)

Semester 1

Course Name and Code: Physical Chemistry I (CH 1541)

Assignment/Seminar

Relevant Course Outcome: Determination of colligative properties and molecular mass of solute

Topic: Write an assignment within 10 pages about elevation of boiling point and depression of freezing point and related numerical problems.

Internal Question Paper – Mapping of Test Items

Course Outcomes	Test Items with Marks
Identify, compare and explain the properties and behaviour of ideal and real gases, knowing kinetic theory of gases and different types of molecular velocities and collision properties.	 Write the value of 'R' in joule - 1 marks Define mean free path - 1 marks Define Boyle temperature - 1 marks Write the equation of Maxwell Boltzmann distribution of molecular velocities - 2 marks Define: a) Average velocity b) RMS velocity 2 marks Write a note on compressibility factor Z - 2 marks Write the postulates of Kinetic theory of gases - 4 marks Write Vander Waals equation of state and explain the significance of Vander Waals constant a and b 4 marks a) Explain critical phenomena and critical constants. b) How you experimentally determine the critical constants - 10 marks
Differentiate between amorphous and crystalline solids, Understand anisotropy, symmetry and types of crystals, X- ray diffraction methods of study of crystal structure, identify the imperfections in crystals	 Write down Bragg equation. Explain the terms - 1 marks Write a note on Bravais lattices - 2 marks What are 'F' centres? - 2 marks Briefly discuss about i) Schottky defects ii) Frenkel defect - 4 marks Derive Bragg's equation - 10 marks
Representation of lattice planes and calculation of interplanar spacing, draw the crystal structures of NaCl and CsCl	1. Draw an (100) plane - 1 marks
Understand the physical aspects of surface tension and viscosity of liquids and the basics of	 What are liquid crystals? - 1 marks How viscosity is measured using Ostwald viscometer? - 4 marks

liquid crystals and their applications	3. Differentiate between smectic and nematic liquid crystals - 4 marks
Design and Determine the potentials of electro-chemical systems	1. Calculate the standard emf of a galvanic cell with electrodes having standard reduction potential as zn ²⁺ /Zn = 0.76 V and Cu ²⁺ /Cu = -0.34 V - 1 marks 2. What is cell constant? - 1 marks 3. Derive Nernst equation for the galvanic cell Cd/Cd ²⁺ _{0.1 M} //Ag ⁺ 0.1 M/Ag - 2 marks
Understand the working principle Electro-Chemical cells	 What is the need of salt bridge in galvanic cells? - 2 marks State and explain the applications of Kohlrausch's law - 4 marks a) Write a note on fuel cells Explain various types of reversible electrodes - 10 marks

SANATANA DHARMA COLLEGE, ALAPPUZHAA

First Semester B.Sc. Degree Internal Examination August-2022

CH 1141: Inorganic Chemistry I

Time: 1.30 Hours Maximum Marks: 40

Section A (1 mark each)

(Answer in one word/2 sentences) Answer all questions

- 1. State Heisenberg uncertainty principle
- 2. What is shape of s orbital
- 3. State Pauli's exclusion principle
- 4. Name the element having maximum electronegativity
- 5. Give an example of Arrhenius acid
- 6.....is an example for aprotic solvent
- 7. State Lux Flood concept of acids and bases?
- 8. Give an example of hard acid

(1×8=8 Marks)

Section B (2 marks each) (Short answer type)

Answer any three questions from the following

- 9. Discus about auto ionization of water
- 10.Briefly explain about acid base property of a compound in liquid ammonia medium?
- 11. What is meant by leveling effect of a solvent
- 12.State Lux Flood concept of acids and bases
- 13. The quantum numbers n=3, l=1 corresponds to which orbital? Draw the shape of the orbital?
- 14.Calculate the de Broglie wavelength of an electron moving with a velocity of 5x 108 cm/s?
- 15. What is meant by the term wave function? What is its significance?

 $(2 \times 3 = 6 \text{ Marks})$

Section C (4 marks each)

Answer any three questions from the following

- 16.State Bronsted Lowry concept of acids and bases sand discuss about conjugate acis and bases?
- 17. Give an account of Pauling's electronegativity scale
- 18.Discuss slater's rule and its applications
- 19. What are quantum numbers? give the significance of each
- 20.Discuss about liquid ammonia solutions of alkali metals

 $(4 \times 4 = 12)$

Marks)

Section D (10 marks each)

Answer any one question

- 21.Briefly discuss about SHAB principle and its applications
- 22.Discuss about reactions in liq SO2
- 23.State and explain the terms used in Schrodinger equation. What is meant by probability of locating electron in space? Sketch the shapes of p -orbitals

(1×10=10 Marks)

S.D. College, Alappuzha

Outcome Based Internal Evaluation Blue Print – 2022-23

Programme Name and Code: B.Sc Chemistry (235)

Semester 1

Course Name and Code: Inorganic Chemistry I (CH 1141)

Assignment/Seminar

Relevant Course Outcome: Define various	Topic: Write an assignment within 10 pages about
concepts of acids and bases.	SHAB Principle and its applications

Internal Question Paper – Mapping of Test Items

Course Outcomes	Test Items with Marks
Discuss the course of development of structure of atom	 State Heisenberg uncertainty principle - 1 marks What is shape of s orbital - 1 marks The quantum numbers n=3, l=1 corresponds to which orbital? Draw the shape of the orbital? - 2 marks Calculate the de Broglie wavelength of an electron moving with a velocity of 5x 10⁸ cm/s? - 2 marks What is meant by the term wave function? What is its significance? - 2 marks What are quantum numbers? Give the significance of each - 4 marks State and explain the terms used in Schrodinger equation. What is meant by probability of locating electron in space? Sketch the shapes of p -orbitals - 10 marks
Apply rules for filling electrons in classifying elements into s, p,d and f blocks	1. State Pauli's exclusion principle - 1 marks
Define various scales of electronegativities and their applications	Name the element having maximum electronegativity - 1 marks Give an account of Pauling's electronegativity scale - 4 marks
Define various concepts of acids and bases.	 Give an example of Arrhenius acid- 1 marks State Lux Flood concept of acids and bases - 1 marks Give an example of hard acid - 1 marks State Bronsted Lowry concept of acids and bases sand discuss about conjugate acis and bases - 4 marks Briefly discuss about SHAB principle and its applications - 10 marks
Understand reactions in non aqueous solvents.	 1is an example for aprotic solvent - 1 marks 2. Discus about auto ionization of water - 2 marks 3. Briefly explain about acid base property of a compound in liquid ammonia medium? - 2 marks 4. What is meant by leveling effect of a solvent - 2 marks

	 5. Discuss about liquid ammonia solutions of alkali metals - 4 marks 6. Discuss about reactions in liq SO₂ - 10 marks
Define Effective nuclear charge and Slater's rules	1. Discuss Slater's rule and its applications - 4 marks